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This paper describes the computational transport of coupled 
plasma-neutral fluids in the edge region of a toroidally symmetric 
magnetic confinement device, with applications to the tokamak. The 
model couples neutral density in a diffusion approximation with a set of 
transport equations for the plasma including density, classical plasma 
parallel velocity, anomalous cross-field velocity, and ion and electron 
temperature equations. The plasma potential, gradient electric fields, 
drift velocity, and net poloidal velocity are computed as dependent 
quantities under the assumption of ambipolarity. The implementation is 
flexible to permit extension in the future to a fully coupled set of non- 
ambipolar momentum equations. The computational method incor- 
porates sonic flow and particle recycling of ions and neutrals at the 
vessel boundary. A numerically generated orthogonal grid conforms to 
the poloidal magnetic flux surfaces. Power law differencing based on 
the SIMPLE relaxation method is modified to accomodate the com- 
pressible reactive plasma flow with a “semi-implicit” diffusion method. 
Residual corrections are applied to obtain a valid convergence to the 
steady state solution. Results are presented for a representative divertor 
tokamak in a high recycling regime, showing strongly peaked neutral 
and plasma densities near the divertor target. Solutions show large 
poloidal and radial gradients in the plasma density, potential, and tem- 
peratures. These findings may help to understand the strong turbulence 
experimentally observed in the plasma edge region of the tokamak. 
c 1992 Academic Press, Inc. 

I. INTRODUCTION 

A controlled fusion power reactor requires plasma at very 
high temperatures (N 10’ K) which cannot be contained in 
known materials. One solution is to use magnetic confine- 
ment in which the Lorentz force acts on the plasma charged 
particles, constraining them to follow the magnetic field 
lines. The magnetic topology generated in the tokamak 
device provides a closed path for the plasma in the shape of 
a torus. 

The plasma diffuses across the magnetic field lines in a 
poorly understood “anomalous” transport process to the 
vessel walls. This creates a wide range of plasma-surface 
interactions which dominate the physics in the tokamak 
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“plasma edge” region, or scrape off layer (SOL), where the 
magnetic field lines terminate on the vessel wall. The plasma 
flows to the vessel walls and is neutralized upon contact. 
The neutral particles are reflected and transported through 
the plasma until re-ionized by electron impact ionization. 
The re-ionized plasma streams to the wall and is again 
reneutralized in a “recycling” process until the neutral 
particles escape the plasma into a pumping duct and are 
gettered from the system. Understanding this recycling is 
vital to understanding the global magnetic confinement 
of the plasma and to design the particle and heat exhaust 
systems for steady state operation. 

The plasma edge region can be assumed toroidally sym- 
metric in many tokamak devices, but the edge physics drives 
strong radial and poloidal gradients which necessitates a 
two-dimensional (2D) modelling capability in the tokamak 
edge plasma region. Magnetic divertors often have signifi- 
cant recycling zones in front of the target, which allows a 
significant temperature gradient along the field line in the 
divertor. Poloidally varying radial profiles of the plasma 
parameters throughout the recycling zone necessitate a 
self-consistent plasma-neutral calculation to predict the 
two-dimensional profiles and plasma behavior in the 
divertor recycling zone. 

Reviews of edge physics issues are given in Refs. [l-4]. A 
detailed review of edge plasma modeling including impurity 
transport is presented by Post and Lackner [S]. Harrison 
et al. [6] present a divertor design review with analytical 
fits for useful plasma-surface interaction data. 

Several groups have reported two-dimensional (2D) 
steady state results in the plasma edge region [7-201. 
A summary of the 2D codes was given in Vold [7]. The 
equations solved vary in format but are all variations on 
the plasma fluid equations of Braginskii [21]. A classical 
parallel momentum equation is solved, and energy 
equations are solved for one (T) or two ( Ti and T,) 
temperatures. The radial transport is assumed to be an 
anomalous flux and generally diffusive. 

The drift flows have been neglected until recent work [7, 
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9, 10, 19, 201, where attempts at self-consistent drifts have 
begun. Gerhauser and Claassen developed a fluid model 
with equilibrium plasma currents in a “semi-self-consistent 
approximation” to study the poloidal drift rotation of a 
limiter plasma [lo]. Recently, they improved the model to 
include a more self-consistently calculated current and elec- 
tric field and applied the model to explain poloidal asym- 
metries observed experimentally on the TEXTOR tokamak 
edge plasma [9]. On D-III, the influence of poloidal drift 
flow on ambipolar electric potential has been reported [ 191. 
Two groups [7, 131 have included parallel electric field 
terms which drive a classical radial drift. This term has been 
discussed by Hinton et al. [22] in relation to the H-mode 
trigger mechanism. 

Neutral transport models incorporate either simple 
analytic approximations (e.g., [ 121) or involve iterating for 
the steady state solution with a Monte Carlo (MC) treat- 
ment for the neutral transport (e.g., [16, 171). The first 
approach is not intended for time dependent resolution of 
the physics. It does not allow the neutrals to evolve as a 
separate species, nor can appropriate boundary conditions 
for the neutrals be readily applied. The second approach, 
using MC codes, is very costly in computer time and 
impractical for time dependent problems. It is difticult to 
couple a linite differenced plasma solution to a statistical 
(Monte Carlo) neutral solution on the same computational 
grid and to assure convergence. An alternative approach is 
to use a diffusion approximation for the neutrals to allow 
the self-consistent coupling of the discretized equations for 
both the plasma and the neutral fluids. This approach 
is described in this report and treated in greater detail 
elsewhere [7, 231. 

Only steady state results have been reported with one 
exception [7]. Three groups [7, 11, IS] formulate the 
problem in general orthogonal co-ordinate systems, two 
groups use toroidal metric co-ordinates [9, 131 while others 
appear to use rectangular geometry. On D-III [ 181 and on 
INTOR [ 163 results are reported in realistic magnetic flux 
geometry. An approximation to the non-orthogonal target 
plate orientation with respect to the poloidal field lines has 
been reported [7] using the code described in this report. 

Solution methods vary and three authors have detailed 
their solution method [7, 10, 121. Braams [12] solves the 
plasma equations using a relaxation scheme similar to 
that used in the present study with implicit differencing for 
the advanced time step. The coupled algebraic equations are 
solved with a modified Strongly Implicit Procedure [24]. 
Gerhauser and Claassen use a modified version of the 
McCormack method [25]. A less specific numerical 
“splitting technique,” possibly variations of the AD1 (alter- 
nating-direction-implicit) method, is also reported in 
[13, 151 as are variations of the PIC (particle-in-cell) 
method in [ 181, and a Newton-Raphson block iteration 
scheme in [20]. 

Following a brief survey of plasma edge modelling, a 2D 
computational model is developed in this report which has 
been implemented in the EPIC (edge plasma implicit com- 
putation) code [lo]. Magnetic flux surface equilibrium is 
assumed constant in time. Core elfluxes to the plasma edge 
region are prescribed as functions of time to simulate the 
coupling with an evolving core plasma. 

II. GOVERNING EQUATIONS OF THE 
ANALYTIC MODEL 

11.1. Plasma Equations 

The plasma equations presently used in the EPIC (edge 
plasma implicit computation) code are derived for the 
toroidally symmetric case and discussed in references 
[7,23,26] and are summarized here. The equations are 
solved for the plasma quantities: density, n ; parallel 
velocity, U; radial velocity, u; electron and ion temperatures, 
T, and T,; and the coupled neutral density, n,. Parallel 
velocity is determined from the classical momentum equa- 
tion but the cross-field (radial) flux is assumed anomalous. 

The metric used for the transport equations in toroidal 
geometry is: H = h,h,R, where R = R(8, r) is the distance to 
the toroidal axis, and the metrics, hs and h,, depend on the 
poloidal magnetic flux surface. The plasma fluid velocity 
components are: u = US + ur + wq, where s is the unit vector 
parallel to the magnetic axis, r is in the magnetic surface 
gradient direction, and q is the drift direction defined as 
q = r x s. The relation between the toroidal coordinates: 
8, r, Q and the coordinates aligned with the magnetic field: 
s, r, q is shown in Figs. 1 and 2. 

Drift velocity, w, is assumed for computational con- 
venience to have a small influence on the plasma density 
and temperature solution. This is found (as discussed in Sec- 
tion IV and in [7]) to be a reasonable assumption near the 
target and in the recycling regions, but is poor in the regions 
near the separatrix/tangency away from the target plate. 
A self-consistent drift is planned in future computations. 

FIG. 1. Coordinate systems: Relationship between the magnetic 
geometry coordinates: s, r, q, and the toroidal coordinates: 0, r, 4. 



302 VOLD, NAJMAEIADI, AND CONN 
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FIG. 2. Poloidal cross section showing poloidal components of flux 
with contributions from the parallel and drift flux terms. The magnetic field 
weighting factors for each flux follow directly from Fig. 1. 

The following equations can be modified for the assump- 
tion that drift velocity is not negligible in the coupled 
equations by replacing the poloidal component of parallel 
flow, (BJB) u, with the total poloidal flow, ue, where u0 = 
(B,/B) u + (B,/B) W, and w  is the plasma drift velocity. That 
case requires coupling another momentum equation to the 
coupled system [7, 261. 

The governing plasma equations implemented in the 
present EPIC code are 

Continuity: 

~+j!j~(nh,R~u)+j!j~(nvh,R)=S.(n,). (1) 

Parallel momentum: 

Radial flux: 

r’, = nv, 

Dan an =nv,,+nu,,--- 
h, ar 

B, 0.71 aT, D an --- ‘a”+ph, e a() 
-w-. 

h, dr (3) 

Ion temperature: 

= Qd + Ski - USpi( - vSpi(no), 

+ S,(n,) 5 (u2 + v2). 

Electron temperature: 

(4) 

= - Qd + S&d. (5) 

In the electron temperature equation it was found necessary 
to define a flux limited parallel heat conductivity 
[ 12,27,28] to avoid unrealistically large heat flux between 
the x-point and the target in some cases, especially during 
transients [7]. The anomalous transport diffusion coef- 
ficient (in Eq. (3)) is a constant chosen from empirical 
considerations and is generally of the order 1. m2 SK*. 

The dependent ambipolar plasma potential, @, is 
calculated in the SOL by integrating the parallel Ohm’s law 
from the target boundary condition, where the plasma 
potential is taken to be 3T,/e. The poloidal component of 
the parallel ambipolar Ohm’s law is 

0.71 B, a 
aePe+T Bh - ae Te + dP(n,) s. (6) 

0 

The drift velocity, w, is calculated from the solution to the 
radial component of ion momentum: 

(7) 

11.2. Plasma-Neutral Volumetric Source Terms 

The neutral-plasma volumetric source terms in 
Eqs. (l)-(5), can be written in a simple manner for the two 
reactions considered here, electron impact ionization and 
charge exchange. Electron impact ionization produces a 
net change in the plasma ion species. Charge exchange 
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contributes to momentum ejtchange primarily through the 
ions. Both interactions contribute to the energy exchange 
terms. 

The neutral-plasma source terms can be written for the 
continuity equation: 

for the momentum equation: 

and for the energy/temperature equations: 

10) 

11) 

where E, is the average neutral energy, and ~,,~is the neutral 
fluid diffusion velocity, given by the diffusion assumption as, 
UOd = - (Dn,/nO) VnO. The neutral diffusion coefficient, D,,, 
is described in the following and is equal to: D,, = 
u33n(ao),,,. The value Eioniz = f(r,, n) is the electron 
energy loss per ionization. 

11.3. Neutral Diffusion Approximation 

The neutral density, n,, is evaluated using a neutral diffu- 
sion approximation [7, 231 assuming that electron impact 
ionization is the dominant “absorption” event, and that 
charge exchange is the “scattering” event. With this analogy, 
the development follows the conventional diffusion theory 
(e.g., see Duderstadt and Hamilton [29]). 

The continuity equation for neutrals is 

~+V.(T,,,)= -S,(n,)= -nno(cJu),i. (12) 

The second moment of the neutral transport equation can 
be simplified to give an expression for the neutral current 
flux, r,,, 

r -+T(nouo), 4 - 

yielding a “conservative flux form” of the neutral diffusion 
equation as 

ano Y&+v. ( 
$EV( nouo) > = -&(n,) 

= -nn,(ov),,. (14) 

The average speed of the neutrals, u,,, is required to 
evaluate neutral density in Eq. (14). A simple approxima- 
tion is that the neutrals are in one energy group at the same 
energy as the average local ion temperature, the one group- 
ion temperature equilibrium (OGITE) approximation. 
Thus, u. is evaluated from the average Maxwellian ion at 
temperature, T,: 

Uo=Jskr,lniM. (15) 

The assumption of one energy group for the neutrals in local 
thermal equilibrium with the ions is valid for 

(16) 

Discussion of this and additional criteria with comparisons 
of the neutral diffusion results to Monte Carlo transport 
results are documented elsewhere [7,23]. It was shown 
there that consistency with the OGITE assumption implies 
Vu, < Vno and so the neutral flux in Eq. (13), should be 
approximated: 

r -A 
-~u,Vn,- -D,,,Vn,. ml - 3 (17) 

With these considerations we can write the neutral OGITE 
diffusion approximation, 

ano 
~+V+DJh)= -S,(n,)= -nn,(o~),~, (18) 

with the neutral diffusion coefficient, D,, defined as 

An outward directed flux and an inward directed flux, 
with particle conservation at the boundary, can be com- 
bined to yield a generalized Marshak-type boundary condi- 
tion that is appropriate for the diffusion approximation 
1301, 

(I- @) nouo 
--+D,,Vno=So, 
(l+cc) 2 (20) 

where the *sign is chosen so that Vn, is outward directed. 
The source term So is an inward directed source calculated 
so that total particle conservation is maintained at the 
boundary and correctly partitioned between plasma and 
neutral particles. The reflection coefficient for neutrals at the 
boundary, cz, must be determined by some means other than 
the present code to fix a boundary condition on the neutrals. 
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It can be evaluated in analytic approximations, taken from 
empirical data or from Monte Carlo results for boundaries 
in ducts with complex geometries. The exhaust efficiency 
characterizing a unique divertor or limiter is equivalent 
to specifying an CI for that divertor or limiter at the 
plasma-duct boundary. Neutral reflection at the duct is 
discussed in Section 11.4.iii. 

In making a one group diffusion approximation for the 
neutrals, the physics of neutral transport is considerably 
simplified, especially in grouping the low energy neutral 
molecules with the neutral atomic species. These issues and 
a detailed comparison to Monte Carlo results have been 
reported [7, 231 to justify this approach. The neutral 
diffusion results were found to be surprisingly accurate 
(within tens of percent) over a range of typical plasma edge 
conditions, despite the marginal validity of the criteria given 
in Eq. (16). 

11.4. Plasma-Neutral Boundary Conditions 

i. Boundary types. An example of a SOL geometry 
using magnetic flux surface metrics is shown in Fig. 3, with 
the boundary types labelled for reference. These types 
include: 

(A) The core-SOL boundary. This can be specified 
along the limiter tangency, the divertor separatrix, or 
slightly inside the last closed flux surface. Plasma particle 
and heat efflux flowing from the core plasma are sources to 
the SOL plasma. This is the fixed core flux, or “fueling” flux, 
due to plasma particle fettling and external power inputs 
such as NBI or ICRF. 

CAROL Bounduv. 

B.) The Target Plate. 

FIG. 3. Example of a computational grid in magnetic flux surface 
coordinates, with the types of boundary conditions labelled. In this exam- 
ple, the non-orthogonal target inclination is approximated by varying the 
number of “poloidal” grid cells along different magnetic flux surfaces. 

Neutrals which are lost across this boundary from the 
edge plasma back into the core are re-ionized and must be 
returned or recycled to the edge region as plasma in a self- 
consistent calculation. The preferred form of this boundary 
condition specifies the “fueling” flux and calculates the 
recycled flux to evolve self-consistently. 

(B) The target plate. The magnetic field lines in the SOL 
terminate at a wall or special target plate in the limiter or 
divertor configuration, where the plasma potential sheath 
forms, drawing the plasma to this surface at the local 
plasma sound speed. Upon striking the surface the plasma 
is neutralized, forming an “exit” from the computational 
region for the plasma. The particles are returned as neutrals, 
so the loss of plasma flux equals the neutral source for the 
particle boundary conditions at the target. The temperature 
boundary conditions are in the form of a heat flux loss 
prescribed by sheath theory, as discussed in this section. 

(C) Thefirst wall. The radial flux of plasma is generally 
small so that the efflux to the first wall is minimal compared 
to the loss at the target plate. Flux boundary conditions are 
used throughout this study with gradient scale lengths set to 
large values corresponding to a small diffusive flux at this 
boundary. The plasma loss term is set equal to the neutral 
source term to account for particle recycling from the first 
wall. Plasma sheath effects are neglected at the first wall. 

A portion of the boundary along the first wall is specified 
to be a duct for pumping neutrals. This boundary is 
modelled through a neutral flux reflection coefftcient (in 
Eq. (20)) of less than one. 

(D) The stagnation lines. In many cases it is convenient 
to model the SOL from a line which is halfway along the 
magnetic field connection length in the edge. For a 
toroidally symmetric device with one poloidal x-point (or 
limiter) this line will be about halfway around the torus 
poloidally from the x-point. Assuming flow symmetry the 
net parallel flow component is zero here and thus the name, 
“stagnation line.” Symmetry again suggests a stagnation 
flow line exists inside (at a smaller minor radius than) the 
limiter tangency or x-point for the parallel velocity. Stagna- 
tion boundaries are modeled by specifying zero flux, setting 
the velocities and gradient transported quantities to zero. 

(E) The privateflux boundary. This follows the divertor 
separatrix line from the x-point to the target. An estimate 
for the flux across this boundary is derived by relating the 
cross-field to the parallel transport through the continuity 
equation. An alternative implementation included in the 
computational model is to extend the grid beyond the 
separatrix line to the symmetry line of the device, where zero 
gradient conditions can be specified. 

ii. Plasma flux at the core-SOL interface. The particle 
flux, rb,, and heat flux, Qbc, at the core-SOL boundary are 
not specified independently and must be consistent with the 
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global confinement times for particles, rp, and for energy, 
TV. The flux BC can be specified as a function of time to 
simulate plasma startup conditions and various time 
dependent characteristics of the core such as a reduced flux 
at the L + H transition, flux “pulses” observed in the 
ELMS, sawteeth propagation from the core to the edge 
plasma, and so on. 

A self-consistent condition at the core-SOL boundary is 
the most important and yet elusive requirement for properly 
solving the edge plasma problem. A core efflux based on 
fueling or pumping exhaust rate requirements is specified, 
and a self-consistently calculated neutral flux from the 
edge-core recycling is added. In this way the total flux from 
the core to the edge evolves consistently with the pumping 
requirements, and the value of density and temperature 
resulting at the edge are consistent with this combined total 
flux including effects of edge recycling. The fueling rate is 
based on steady state machine design requirements which 
are assumed to observe the plasma beta and density limits. 
As a simplification of the actual conditions in operating 
experimental devices, the fueling rate is assumed to be 
independent of the recycling. In lieu of solving transport 
throughout the complete core and edge coupled plasma 
regions, the superposition of recycled flux and fueling flux at 
the separatrix boundary is a reasonable approximation in 
which some of the problem nonlinearity is treated. This is 
described in greater detail in Refs. [7, 231. 

An effective reflection coefficient for neutrals at this 
boundary, CZ,,, resulting from charge exchange in the core 
plasma is estimated [23] for use in the neutral boundary 
condition (Eq. (20)). The fraction not reflected, (1 - N,,~), 
is ionized in the core region and diffuses back to the SOL 
as plasma with the radial plasma velocity, u. The time 
dependence of this core-SOL recycling is modelled 
assuming a “neutral edge region” just inside the last closed 
flux surface with an average neutral density, n,, (core 
neutral density), an average density of ions due to the 
neutral re-ionization, noi, and a radial thickness equal to a 
locally determined neutral mean free path for ionization, 
/i not Integrating equations for these quantities determines 
the re-ionized neutral flux, (n,,v), which is added to the 
prescribed flux from the core, r,.(t) to determine the time- 
dependent flux boundary condition on the plasma density. 

iii. Neutral rejlection at the duct. The neutral diffusion 
model does not apply beyond the plasma region. A reflec- 
tion coefficient, a, equal to the probability of return to the 
plasma from the duct at the plasma-duct interface must be 
determined for the neutral density boundary condition 
(Eq. (20)). The neutral duct reflection coefficient is derived 
independently from comparison to experiment, from Monte 
Carlo results, or from an analytic form derived in terms of 
the capacitance of the pumping duct. On Textor with the 
ALT-II toroidally symmetric belt limiter, comparisons of 

experimental data and Monte Carlo simulations [ 311 show 
that this probability is typically in the range 0.8-0.9. 

iv. Sheath boundary conditions. The plasma in the 
vicinity of a material surface forms a “plasma sheath” 
regardless of angle of incidence of the magnetic field lines 
[ 321. We follow the usual convention in modelling the edge, 
that the sheath forms only at the surface which is normal 
or strongly oblique to the magnetic field lines, which is 
designated the “target” or “plate” in the limiter or divertor 
configuration. Cross-field transport losses to the first wall 
are prescribed fluid fluxes, without the sheath taken into 
account. 

The sheath boundary conditions in edge modeling have 
been discussed elsewhere [26, 331, and we summarize the 
applicable results. Plasma fluid (or kinetic) models are 
applied to evaluate transmission coefficients, 6, which relate 
plasma density flux, electron energy flux, and ion energy 
flux through the plasma sheath as a function of the change 
in plasma potential through the sheath. Setting general flux 
quantities equal to sheath transmitted quantities, the sheath 
BC becomes 

I-” = @V),heath = dnC* (21) 

rTi = 
(( 

inT,+FV’) u-KVT,) = 6,nfZY Ti (22) 

~~~=i~~nT~~~-~VT~j~~~.~~=--T:. (23) 

The coefficient of $ accounts for the total convective flux, 
compared to t used in Eqs. (4) and (5), where the p V . II 
contribution is separated to the right-hand side for com- 
putational convenience as described in Section 111.3. 

The density flux transmission coefficient, 6, is set equal to 
one, corresponding to the Bohm sheath criterion. This 
establishes the boundary condition on parallel velocity, u: 

V sheath =u=c,. (24) 

where C, is the plasma sound speed. The boundary condi- 
tions on temperatures apply to the parallel component of 
the energy flux where hi and 6, must be specified. There 
is a range in values for the 6’s in the literature [34], 
where: di z 1.5-3.5 and 6 e GZ 4.8-5.5. We follow the standard 
practice to lix these transmission coefficients as constants 
in the computations. The default values used here are 
6, = 2.5 and 6, = 5.5. Results have been seen to be relatively 
insensitive to the value chosen. 

III. COMPUTATIONAL METHODS 

111.1. Computational Requirements of the Plasma Fluid 
Equations 

In the fluid equations we have coupled the plasma den- 
sity, the parallel velocity, a radial anomalous velocity, Ti, 
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and T, (Eqs. (1 j-(5)) with the neutral density in a diffusion 
approximation (Eqs. (18)-( 19)). The neutral transport is 
purely (elliptic) diffusive while the plasma equations are 
combined convective-diffusive (parabolic) equations that 
are typical of ordinary fluid flow except in two important 
aspects. First, the continuity equation has a reactive 
volumetric source term due to neutral re-ionization which 
dominates near the sheath target region and strongly 
influences the solution through the buildup of density 
by plasma-neutral recycling. Second, the plasma sheath 
boundary condition at the target fixes the plasma fluid out- 
flow speed from the region to be sound speed, and thus the 
exit flow velocity is determined by the plasma temperature. 
Both these factors are significant departures from con- 
ventional non-reactive fluid flow and must be treated 
appropriately in the computational method. 

Plasma velocity is significant in the edge region. It is 
reasonable to assume that the plasma flow remains subsonic 
throughout the computational domain, but is sonic at the 
target boundary. The upstream flow remains at a low speed 
and thus would be incompressible in a conventional fluid. 
However, because the plasma density varies spatially, the 
plasma fluid must be treated numerically as a compressible 
fluid (Section 111.4). 

The geometry for a typical divertor problem is shown in 
Fig. 3, where an orthogonal grid is imposed on the poloidal 
magnetic flux surfaces. The third dimension of the grid 
(depth into the page) varies as a function of position to 
model the toroidal distance for each grid cell. The plasma 
flows from the core into the SOL and then follows the 
magnetic flux lines to the target or plate boundary, 
emphasizing the need for a flexible computational method 
to deal with arbitrary orthogonal geometry. 

The spatial grid requirements are limited by the solution 
gradients which are steepest near the separatrix or tangency 
line and are steepest poloidally near the plasma flow exit at 
the target plate. The radial gradients are established by the 
balance of parallel and cross-field transport of the plasma. 
The axial (poloidal) gradients in the plasma parameters are 
limited near the target by the viscosity and conductivity and 
can be limited by the neutral density scale lengths in regimes 
where recycling is important. The neutral and the plasma 
transport physics differ, so the neutral density scale lengths 
are shorter and can limit the plasma scale lengths in the high 
density, high recycling regimes. A dense grid near the target 
is needed to resolve the neutral gradients there. A finite 
difference scheme is necessary which allows variable grid 
spacing to resolve each of these scales properly. 

Time step restrictions are related to the advection of the 
plasma flow. The limiting time step is determined at the grid 
cells immediately in front of the target where the plasma 
flow becomes sonic, discussed further in 111.7. 

In the literature for fluid computations there are two 
methods which have been widely used and also successfully 

applied to the edge plasma. These are the MacCormack 
method [25, 351 developed in the aerospace community, 
and the SIMPLE relaxation method [36], developed for 
convective-diffusive heat transfer problems by Spalding and 
Patankar and then relined in a semi-implicit method by 
Patankar [37]. The MacCormack method is applied to the 
2D computation of the edge plasma by Gerhauser and 
Claassen [9, IO], and the SIMPLE method by Braams 
[ll, 121. A generalized orthogonal grid adaptation was 
given -for the MacCormack method by Deiwert [38]. 
Patankar’s approach is based on the control volume 
approach to finite differencing and directly applicable to the 
required general orthogonal grid. 

Based on the computational requirements for the coupled 
edge plasma-neutral problem, a method based on the 
SIMPLE relaxation was chosen. The geometry considera- 
tions are sketched in III.2 and the basics of the relaxation 
method are outlined in 111.3. The interested reader is 
referred to Patankars’ text [37] for details of the finite 
differencing scheme and to discussion of its application to a 
plasma by Braams [12]. The compressible form required 
for the plasma equations has modest relaxation parameter 
requirements as discussed in Section III.4 and significant 
modifications were found necessary to solve for the plasma 
fluid case. Where our approach differs from the previous 
efforts, we discuss the method in greater detail, as in solving 
the density with an “implicit diffusion” method in 
Section 111.5. True steady state solutions require a residual 
correction (Section 111.6). Computational performance is 
summarized 111.7. 

111.2. Geometric Considerations 

Geometries were illustrated for the toroidally symmetric 
case in Figs. 1-3. New coordinates, x and y, are used in 
referring to the 2D computational axes in the (0, r) plane, 
where x is parallel to the poloidal held, B,, and y is in the 
poloidal flux surface gradient direction. The computational 
geometry is related to the toroidal metric geometry through 
the general volume element, dV: 

dV= dx dy dz = h,dtl h,dr h,d+4 = h,d0 h,dr2xR (25) 

which relates each metric element as: 

dx=hgd6 

dy=h,dr 

dz = 2nR(8, r). 

(26) 

The orthogonal computational grid on the magnetic flux 
surfaces is generated by one of several preprocessor codes 
[7]. The preprocessor code reads the poloidal magnetic flux 
data generated by an MHD equilibria code (the PESTE 
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[39] and the NEQ [40] MHD codes have been used). An 
orthogonal computational grid is generated from this data 
in the (0, r) plane and at each grid point the magnetic shear 
is calculated, Be/B, to project the parallel momentum into 
the poloidal plane. The lines of constant poloidal flux are 
derived directly from fits to the MHD code output data. 
Several schemes for generating the orthogonal mesh lines 
along the gradient of the poloidal magnetic flux surfaces 
have been described [41-43]. 

In the present study the grid generation method involves 
an evaluation of linearly piece-wise orthogonal approxima- 
tions. One moves from a known point (x0, yO) on one 
magnetic flux line segment, S,, to the point to be deter- 
mined (xi, yr) on the adjacent flux line segment, Si. These 
line segments are local linear approximations and must con- 
verge or diverge (unless they are parallel then the mutually 
orthogonal piece is trivially perpendicular to both) and thus 
they must intersect. A third line which best approximates 
the orthogonal to the two line segments then forms equal 
angles with each line segment and the three lines form an 
isosceles triangle. With this simple trigonometric interpreta- 
tion of the local orthogonal approximation to the magnetic 
flux surface gradients, one can construct the entire grid by 
starting at fixed points along one boundary (e.g., the 
magnetic separatrix) and marching across the prescribed 
magnetic flux surfaces covering the plasma edge region of 
interest. Non-orthogonal target orientation in the (0, r) 
plane is modelled by varying the number of grid cells along 
each magnetic flux surface as seen in Fig. 3. 

The finite discretized fluid equations are based on the 
control volume or integral approach rather than a differen- 
tial formulation. Through use of the divergence theorem a 
system of coupled algebraic equations are cast in terms of 
fluxes normal to each computational cell surface. The 
divergence theorem equates the volume integral of the 
divergence of a flux, V. Te, to the closed surface integral of 
the components of the flux, Tc, normal to that surface: 

I 
VT,dV= I-,.dA. 

i (27) 

Integrating the differential equation over the volume of each 
computational cell, the divergence of flux is expressed 
conveniently in terms of the flux normal to each of the 
computational cell’s surfaces times the respective surface 
areas defining the cell boundaries. 

This is illustrated with an example, using the continuity 
equation: 

g+v.(n”)=S,(n,). (28) 

In toroidal coordinates, H = h,h,R, with toroidal symmetry 

and including the parallel and drift velocity components, u 
and w, one finds the continuity equation to be 

= ~,hl). (29) 

Integrating this equation over the control volume repre- 
senting one grid cell, this becomes 

+; (nu,h,R) = S&I,) dV 
> 

(30) 

Substituting in the grid metrics h, de --) dx and h, dr -+ dy 
and cancelling coefficients, one obtains 

+2n dO{cY,{(nu,h,R)}} = S,(n,) dV, (31) 

where { 8, ( . } } and { 8, { . } > imply finite difference opera- 
tions on the enclosed terms respectively in the x they direc- 
tions. Since 271 dr and 2n dtl are constant unit lengths (as 
defined in (25), (26), it is h, and ho which vary with respect 
to the coordinates), they can be brought back into the finite 
differenced expressions, where they are combined with the 
metrics inside the brackets to obtain the metric coefficients 
in terms of dx, dy, and dz: 

+ {a,{ (nu, dx dz)}} = S,(n,) dV. (32) 

The area elements are given as dA,, = dy dz and 
dA,, = dx dz. The brackets enclose flux terms which have 
been integrated over their respective surface areas, so one 
can write the term, for example, in the x direction as 
{a,(TdA } }. This last equation simplifies to the more 
intuitively obvious form we expect for a control volume 
approach, 

$dV+ WAl,+,,2 - WW-m+ PA},+,,2 

- {r d-4 >,v ~ 1/2 = Un,) dV> (33) 

where the plus and minus 4 notation refers to the control 
volume boundary in the respective directions as shown in 
Fig. 4. 
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FIG. 4. The computational grid and cell indices. 

An orthogonal grid is constructed in the staggered grid 
form as in Fig. 4 for computation. The transported quan- 
tities n, n,, T are calculated at the main cell center, (i, j), 
and the fluxes, r, and velocities are calculated at the main 
cell boundaries, denoted: e = east, (i + i), w = west, (i - $), 
n = north, (j + $), s = south, (j - i). The control volume for 
the x component of velocity is staggered one-half of the 
main grid cell horizontally to the right, and the control 
volume for the y component of velocity is staggered verti- 
cally one-half grid cell to the top in Fig. 4. A piece-wise 
orthogonal grid is assumed, with straight line approxima- 
tions between adjacent grid points. Because of the staggered 
grid, the grid point density is twice the density of the main 
grid cells in each direction. 

Summarizing, the general integral transport equation 
operator, 2, 

z=Sv.(a”5-pVr)dv=SV.(ri)dV, (34) 

where r is the quantity transported, and r5 is the flux of < 
from a volume element dK Cross-field derivatives are 
ignored, consistent with the assumed simplified momentum 
viscosity tensor. In the staggered grid, Eq. (34) is written 

s v-(aqh-pvVQ)dV 
where 

=A.T,-A,r,+A,r,-A,~r,, (35) 

(36) 

and similarly for r,, and r,. 

111.3. The Semi-implicit Method 

The relaxation scheme is based on the SIMPLE algo- 
rithm [36, 37 3, an iterative semi-implicit calculation. It is 

similar to the explicit scheme for pressure relaxation 
developed by Harlow and Welch in the MAC method [44]. 
The essence of the pressure relaxation is to combine the con- 
tinuity and momentum equations as a pressure correction 
equation, solved on a staggered grid. As iteration for the 
pressure correction proceeds, the pressure error is reduced 
to zero and so the residual, equal to the continuity equation, 
becomes satisfied in the iteration-relaxation process. 

To implement the semi-implicit form of the relaxation 
scheme for the fluid system, first the equations governing the 
convectivediffusive flux of each of the unknown conserved 
quantities except density, including velocity, and tem- 
peratures, T,, and T,, are written in a fully implicit finite 
differenced form, using Patankar’s “power-law” differencing 
scheme [37]. In this finite differenced form, the sum of the 
convection term and the time dependent term at the advan- 
ced time step is replaced by the product of the conserved 
quantity times the finite differenced form of the continuity 
equation. This numerically stabilizes the convective- 
diffusive flux of each conservation equation as illustrated in 
the following. 

A general form of the convective-diffusive equation can 
be written: 

ayt ,,+v-(a&l-pv5)=s(r). (38) 

This general form equation can be written for plasma 
temperature, where < = 2 T, and y = n, as 

ing+iTE+V- +V.(-pVT)=S,. (39) 

The continuity equation can then be multiplied by 5 = ST, 
to obtain 

2 T$+i TV.(nu)=i TS,. 

The advective terms (third term in (39) and second term in 
(40)) are not analytically identical; however, it has been 
shown [37] that the finite difference expression for either is 
equivalent in the power law form of the finite differenced 
control volume equations. This assumes that the conserved 
quantity, here T, is constant throughout each computa- 
tional cell volume. One can then rewrite the plasma 
temperature equation (39) by combining with Eq. (40) in a 
finite differenced form which corresponds to a diffusive type 
equation, 

in$+VS(-/3VT)=S,-i TS,, 
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where V . ( -/I VT) represents the finite differenced operator 
in power law form for the divergence of the diffusive heat 
flux. This effectively eliminates the numerically unstable 
convection term while leaving the diffusive term, and 
gaining a source term, - 2 TS,, from Eq. (40). The source 
term can be linearized for numerical stability. In applying 
this method to the plasma equations, the plasma continuity 
equation contains a significant source term. This is unlike 
the usual non-reactive fluid equation wherein the density 
source term is zero. The reactive term introduces an extra 
effective source into the finite differenced form of the 
equations for each of the conserved quantities, and these 
must be linearized implicitly. 

The flux of the conservative quantities (u,,, T,, T,) after 
the “power-law” differencing scheme is solely diffusive and 
thus is numerically stabilized for an implicit solution with 
Eq. (41) evaluated at the advanced time step. The usual 
finite differencing for diffusion (e.g., see Chap. 8 in [45]), 
using a control volume approach and integrating over the 
volume, is formulated implicitly for the neutral density 
assuming plasma source terms which are determined by 
iteration. One obtains a coupled system of non-linear 
algebraic equations representing the partial derivatives in 
two dimensions for each of the unknowns (except density) 
in the form 

where 5 is the unknown quantity at the advanced time step, 
the summation is over adjacent grid cells and represents the 
divergence of the flux of the unknown quantity in the usual 
five-point form for a 2D problem. Sources are evaluated at 
the advanced or implicit time step. Inhomogeneous sources 
and the conserved quantity at the present time step are 
included in B,. The flux divergence terms are separated into 
the orthogonal components, indexed here with i and j, and 
then Eq. (42) is solved with simple tridiagonal sweeps, suc- 
cessively in each direction, as in a “line-SOR” method [46]. 
The time step plays the role of a relaxation parameter. 

In the SIMPLE relaxation of the momentum equation, 
the source term, B,, is separated into the pressure gradient, 
VP,, and all other source terms, S,, 

where 5 now represents a component of momentum (or 
fluid velocity). The flow velocities and the pressure are 
successively relaxed until a residual equal to the pressure 
error approaches zero. The zero residual corresponds to 
the condition that the present iterate value for density 
approaches the correct density and so the continuity 
equation is satisfied to within a specified tolerance. 

111.4. The Semi-implicit Method for a Compressible Fluid 

The relaxation method of Patankar is derived for the 
incompressible fluid or constant density case but can be 
extended to a compressible fluid with some added terms 
complicating the pressure error equation. The pressure is 
related to the density and temperature in a plasma as, 
p = r&T, where the density and pressure vary as a function 
of space. The pressure relaxation of the plasma must take 
into account the spatially varying density, so the com- 
pressible form of the relaxation scheme must be used in 
solving for plasma flows. 

The relaxation scheme is based on an iteration to the 
implicit solution in which each unknown (n, v) is corrected 
while assuming the others are constant, equal to their pre- 
vious iterate values. One can write the actual solution as the 
sum of the iteration solution and the error of the iteration 
solution. To relax the continuity equation in 2D one defines 

n=rZg+n 

u=ug+zd (44) 

v = vg + VI, 

where the superscript g refers to the iteration (guessed) 
solutions, the prime indicates the error terms, and the left 
sides of the equations are the correct solutions. The 
inhomogeneous plasma continuity equation is simplified for 
discussion purposes in the form: 

an a(nu) + d(m) 
at+- ax -=nng(av),,. 

ay (45) 

Substituting the above iteration solutions and errors into 
this equation for continuity, we obtain an “iteration” 
continuity equation: 

a(ng+d) a 
at + G ((n" + n')(zP + 24')) 

+ g ((ng + n')(vg + v')) 

= (ng+ n’) n,(fJv),i. (46) 

Errors are assumed to be small, so the products of error 
terms are dropped. Rearranging, we have 

a(d) a at + y-g ((ngu' + ugn')) 

a + - ((n%' + vgn' 
ay 
ang apbg) = --- ~- 
at ax 

+ ngno(~v),i, 

1) - (n’) %(~V),, 

a(nw) -____ 
ay 

(47) 
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where we have also simplified, by neglecting the error in 
the neutral density, n, =ni + n’, and the error in the 
temperature dependent reactivity of the electron impact 
ionization. 

It is at this point in Eq. (47) that one can neglect all terms 
involving n’ for the incompressible fluid case, since then 
density is a known value and n -+ ng. In that case the 
SIMPLE method prescribes the velocity errors in (47) in 
terms of gradients in the density (or pressure) errors, 
u’(n’ = p’/kT) and u’(n’= p’/kT), as we show in the following 
equations. The resulting equation for n’ (or for p’ as in 
[ 371) is a Poisson-like equation for the incompressible fluid 
case, it is purely diffusive and therefore numerically stable 
for implicit solution. Unfortunately in the plasma case, the 
extra terms related to compressibility must be retained. 

The error terms must be expressed in a form such that 
iterations converge and as the errors approach zero, the 
LHS of Eq. (47) goes to zero and the RHS, or residual, 
equals the correct continuity equation. The desired form of 
the error terms is to make the convective error terms look 
like diffusive terms to stabilize the numerical computation. 
To do this, each error term is written in terms of a gradient 
with the velocity errors in terms of the pressure gradient 
errors. The momentum equation for parallel velocity, u, at 
point (i, j) in the finite difference form (43) is written 

A~~y=T(Ai,l,j,~uiil,jfl)-dx a(nT) + B.. B> (48) 

where the second term on the right is the pressure gradient 
and B, is any remaining source term. The pressure gradient 
is assumed to dominate the errors so that the divergence 
term and the source term, B,, are neglected in the pressure 
correction (but not in the momentum equation solution). 
Temperature is also held constant during the pressure 
relaxation, which allows us to rewrite Eq. (48), solving for 
the velocity error term, u’, in terms of the density error, n’, 

u!,” -rwT) 

rJN A, 8x ’ (49) 

An estimate of the radial velocity error, u’ in terms of n’, 
comes from the radial flux equation (3): 

(50) 

Substituting these error terms back into Eq. (47), we obtain 
the density error (pressure relaxation) equation similar to 
that given previously [ 121: 

-(n’) no(ou>,, 

ang a(fiw) apm-) = --- ~-~ 
at ax ay 

+ ngnO(du),i. (51) 

This is in the desired diffusion form, but unlike the incom- 
pressible case which is purely diffusive, there are now also 
advective terms present due to the compressibility of the 
plasma. These may be implicitly unstable if the advection 
dominates, leading to a matrix of the discretized equations 
which is not diagonally dominant. The neutral source term 
is also destabilizing, since it is positive and can increase the 
density. In the high recycling regimes this source term 
dominates the continuity balance. 

Results obtained by relaxing Eq. (51), with the coupled 
equations, (42) for each of the conserved quantities and 
with the neutral equations, are satisfactory. The relaxation 
must be done slowly (small relaxation parameter or time 
step) due to the nonlinearities. Therefore a method, 
involving “semi-implicit diffusion” for solving the continuity 
equation was examined for improvement in relaxation 
performance. 

III.5 Semi-implicit D@usion Closure 

Computational time requirements and numerical 
instabilities in the previous relaxation scheme provided 
motivation to solve the continuity equation and close the 
equation system by an alternative scheme, referred to as the 
semi-implicit diffusion method. The conserved quantities, u, 
T,, and T,, are still solved using the power law differencing 
scheme. 

The essence of the semi-implicit diffusion closure method 
is to add a “diffusion” term to both the right-hand side and 
the left-hand side of the continuity equation and to iterate 
on the solution, so that in iterating, the density guess, ng, 
approaches the correct density, n. In this iteration process, 
the diffusion terms on each side of the density equation can- 
cel each other and only the advective terms of the continuity 
equation remain. The method is similar to “artificial 
viscosity” used for stabilizing advective momentum 
equations [47] and similar to a semi-implicit method 
developed for solving the fluid MHD equations [48]. 

The radial velocity for the plasma has already been 
assumed to be diffusive by the assumptions of an anomalous 
transport, so the radial transport is implicitly stable and 
does not require numerical stabilization. The advection 
component requiring numerical stability in the plasma con- 
tinuity equation is along the B field (along x in this case). 
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Using the “implicit diffusion” coefficient, Did, the form of 
the continuity equation in 1D is 

!?+tg+-g -Did!!!))“+’ 

nno(c+;+-& ( -Didg))m, (52) 

where m is the current iteration index (not the time step 
index; all quantities are evaluated implicitly at the next time 
step) and m + 1 is the next or implicit iteration step. The 
source term, WZ~(W),~, must be retained on the RHS 
because it is positive and could be destabilizing during itera- 
tions if solved implicitly on the LHS. In iterating, the value 
of density at m approaches that at m + 1, and the implicit 
diffusion on the LHS approaches the explicit diffusion on 
the RHS. In the limit of FY + nrn+ ‘, the diffusion terms on 
each side cancel and the equation approaches the correct 
continuity equation. 

The advantage in adding this diffusion is that the 
magnitude of this additional term can be selected to equal 
or exceed the convective term in the continuity equation. 
This effectively stabilizes the continuity equation with a 
diffusive term and allows for implicit numerical solution. 
Numerical stability is guaranteed for 

D,, 3 u dx. (53) 

Taking the equality case of (53) and using the power law dif- 
ferencing scheme on the above form of the continuity equa- 
tion (52), this method is similar to an implicit “upwinding 
scheme,” since the downwind contribution will be exactly 
cancelled by the implicit diffusion from the “downwind” 
grid cell. 

In testing the implicit diffusion scheme, it is confirmed 
that the density equation alone is numerically stable and 
can be advanced as expected in a fixed flow field (i.e., not 
iterating on velocity or temperatures) with relatively few 
iterations and arbitrarily large time steps. The numerical 
dispersion was examined qualitatively by applying Eq. (52) 
to a test problem, the 1D advective propagation of a square 
wave at a constant velocity. Dispersion, related to the 
spreading of the pulse shape in time, was found to be 
comparable to that of an “upwinding” difference scheme. 

111.6. Residual Corrections 

In either density-closure method, it was found necessary 
to take large numbers (a few hundred to a few thousand) of 
time steps to achieve convergence in a full simulation, 
starting from a low density and low temperature plasma and 
continuing to steady state in a full recycling solution. This 
results from the combination of a small time step ( FZ 10 ~’ s) 

limited by plasma parallel flow into the target, and the large 
total time (several milliseconds for the fixed boundary 
condition (BC) cases, and tens of milliseconds for flux BC) 
needed to achieve a steady solution. The total time is fixed 
by the buildup of the recycling regime which is limited in 
turn by the growth of neutral density recycled from the core 
and from the vacuum duct regions. Neutrals, re-ionized in 
the core, return to the edge through the relatively slow 
radial transport. The neutrals returning from the duct also 
have a long effective buildup time and contribute to the 
relatively slow equilibraton of the recycling regime in the 
edge plasma. Thus the coupled problem must proceed at 
the plasma-limited time step size, but over the neutral- 
limited total time to achieve steady state. 

The large number of required time steps with an iteration 
error at each time step can lead to large accumulated errors 
if not properly treated. Consider a relative error of 10M3 
allowed at each of 2000 time steps. If the error is consistently 
biased in one direction, as it usually is in the plasma for 
physical reasons, then the accumulated error after the 2000 
time steps will be of the order: 

(54) 

or the solution will change by several times its own 
magnitude! Under these conditions the solution will not 
appear to converge to a constant or steady state value, but 
will converge to the “error rate” of change implied by the 
accumulating error. Thus the solution will appear to “drift” 
continuously in time without clearly achieving steady state. 

This problem was dealt with by Hirt and Harlow [49] in 
a corrective procedure for the numerical solution of 
non-linear initial value problems (IVP). Generally, one has 
a matrix of IVP equations: 

(55) 

where 5 is the unknown vector, and Q(t) and r(t) are 
functions of the unknown vector. This is written, instead, as 
two coupled equations, 

(56) 

and 

D =O, (57) 

where D is the residual error term. This should be identically 
zero, but is not zero in an iterative calculation for a non- 
linear problem. The residual magnitude is comparable to 
the error tolerance specification. In the above form, this 
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admits a nonzero rate of error in dD/& and imposes the 
additional constraint that the error at the new time, D, 
should be equal to zero, which provides us with a basis to 
correct successive iterations using the previous iterate error. 

The original correction was formulated for an explicit 
time step, but is modified here for an implicit calculation. In 
an implicit finite difference form, stepping in a time interval, 
6t, from time, II, to time, n + 1, one obtains 

D ‘*+1=Dn+Q(~“+1)-Q(~“)+6t~~(~“+1) (58) 

and 

D . n+‘=o (59) 

Combining these gives the implicit time step solution for 
5 n + ‘, in the form, 

f2(~“+‘)+&4-(t”+‘)= +Q({“)-D”, (60) 

where D” is evaluated by decrementing the time step index 
in Eq. (58), giving 

D”=D”-‘+O(t”)42(~“-‘)+6t~~(~“). (61) 

These last two equations are rewritten to be consistent with 
the notational form given previously, 

where the previous error term is evaluated as: 

D” D”-’ 

6t- 6t 
--+ (A,irii--(Ai~l,j~15;+l,j+l)-Bii)”. (63) 

The previous time step values as (n - 1 ), denoted in (61) as 
s2(5”- ‘), have been incorporated into the term (B,)” in 
(63), consistent with the decremented time index. 

This correction is implemented in the plasma edge code 
for the density only. It was found that applying this residual 
correction to the other variables, ri, T,, or n,, was unne- 
cessary and led to a more numerically unstable situation in 
some cases. 

IV. COMPUTATIONAL PERFORMANCE, INITIAL 
CONDITIONS, AND CONVERGENCE 

The coupled plasma-neutral equations are solved in the 
code, EPIC (edge plasma implicit computation) [lo]. 
There are three types of geometry inputs possible. 
Rectangular geometry (a first approximation to the SOL 
geometry) with variable grid spacing is directly read by the 
EPIC code. Orthogonal grid surfaces for limiters (0, r) and 

for approximate divertor geometries are generated analyti- 
cally in a preprocessor code. A grid in magnetic flux 
geometry for accurate divertor representation is generated 
from PESTE [39] or NEQ [40] MHD equilibria data 
using a second preprocessor code [7] as in Fig. 3. 

The output data from the EPIC code is plotted as a func- 
tion of time at two representative points (one upstream 
along the separatrix and one at the separatrixxtarget 
intercept) as a useful and rapid check on convergence 
and the time dependent evolution. Additional graphics 
postprocessors can generate various types ofplots displaying 
spatial distributions of the solution at selected times. 

Each unknown is solved on the 2D computational grid by 
first sweeping horizontally in an implicit “line-SOR” proce- 
dure to pick up the sheath boundary condition and then 
sweeping vertically to pick up the core-SOL boundary 
condition. Each sweep involves the fully implicit solution, 
successively, along each line, using updated values as soon 
as available. The equations are solved for each unknown, 
successively updating the solutions at the new time step as 
available. 

The order of solution in the implicit diffusion scheme for 
the coupled variables is n,, n, u(n), T,, T,, u. After solving 
the coupled variables, the dependent quantities: plasma 
potential, drift velocity, and total poloidal velocity are 
computed. The neutral density is solved first because it is 
diffusive and numerically stable, and it is needed in the 
source term for the continuity equation. The temperatures 
are solved before the parallel velocity because the sonic 
boundary condition on u depends on T (target). The 
successive solution of each unknown quantity limits the 
technique to a semi-implicit status. Iterating to convergence 
at each time step recovers an implicit method. 

Iterating the coupled system of plasma and neutral equa- 
tions with excessively large relaxation, corresponding to 
time steps exceeding a value of the order (lo-.’ s) leads to 
numerical instabilities. This time step is about one order of 
magnitude larger than would be allowed by the CFL 
criterion for the explicit treatment of advection and is much 
larger than the time step allowed by explicit treatment of the 
diffusive terms. The observed time step limit is related to the 
non-linear interactions and the sequential solution of each 
unknown within one iteration. The parallel sound speed 
boundary condition (BC) at the target grid cells couples the 
densities and flow field explicitly to the plasma tem- 
peratures. This coupling in the sheath BC of velocity and the 
temperature appears to be the limiting factor for time 
step size stability. Because of this coupling, numerical 
instabilities have been observed to oscillate in some cases 
with frequencies that are characteristic of sound or pressure 
waves, but that are numerical and not physical in origin. 

Early trials with the code were iterated to convergence at 
each time step (i.e., fully implicit). Using convergence 
criteria typically Au/u per step z 10 ~ 3, where the maximum 
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Au/u is evaluated for each unknown, convergence required 
on the order of 5-20 iterations per time step, usually settling 
down to z 5-7 after several steps. It was found by reducing 
the maximum number of iterations allowed at each time 
step, that the same solution in time would result with as few 
as two iterations per time step. This became the “standard 
run procedure,” two iterations per time step, and in this 
regard the method is like a predictor-corrector scheme with 
both steps computationally similar, except that in the 
second step the coefficients have been updated once to 
values at the new time step. 

The first computational time step in a new problem is 
unique, a “catch-22 situation,” wherein one needs to start 
from a solution which is a self-consistent initial condition, 
but a self-consistent solution is what one is trying to 
calculate. At the first time step a guess is provided, either 
constant protiles at low density and low temperature condi- 
tions, or with axial (poloidal) profiles if an axial scale length 
of plasma density is specified. Consistency with the sheath 
boundary condition forces plasma pressure at the target to 
be half the upstream pressure for the initial guess. Several 
iterations (typically 5-20) at this first time step proceed to 
be assured that the first step iterates to a self-consistent 
initial condition. This initialization allows the plasma to 
equilibriate along the field lines, while the cross-field solu- 
tion remains relatively flat, reflecting the slower cross-field 
transport. 

Convergence testing for the steady state solution uses a 
tolerance, tol, criteria typically Au/u f to1 z 2. x 10p4. Con- 
vergence is also monitored with time dependent plots which 
are useful to determine if an unconverged solution is near 
convergence. Conversely, the time dependent plots can 
reveal a solution which is slowly drifting away from a true 
steady state solution. This may be the case even when the 
residuals at each step appear to be small, satisfying 
Au/u d tol. In either case the time dependent plots are useful 
diagnostic tools. 

The time to converge is problem dependent, varying with 
the total time required for the physics to reach steady state 
divided by the timestep. The timestep magnitude is limited 
to about 1O--5 s for the typical problem on a 20 x 10 grid, 
which employs a minimum poloidal grid spacing of about 
2-5 cm. Adding more grid cells without reducing the size of 
the smallest (time step limiting) cells will linearly increase 
the solution time. Making a smaller poloidal grid size near 
the target proportionately reduces the maximum stable time 
step. High recycling regimes where plasma and neutral den- 
sities are large at the target can be non-linearly destabilizing 
and in some cases requires halving the time step to maintain 
stability after the densities are above a critical level (plasma 
density on the order of 10” mp3). Computational time for 
the typical problem is about one Cray cpu minute per 
millisecond of plasma simulation time. This is for unvec- 
torized code, where it is expected that vectorizing the main 
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computational loops may reduce the computational time by 
up to an order of magnitude. 

Flux boundaries are prescribed as a function of time with 
characteristic time constants of the order of the response 
time of the SOL recycling so that a quasi-equilibrium can be 
maintained to simulate a “start-up” condition. It is not com- 
putationally practical to simulate real start-up time scales 
on the order of several seconds, but the simulations are 
“time-dependent realistic” over the tens of milliseconds 
required in the SOL plasma to reach steady state. 

The required computational time is dictated by the time 
to establish recycling and particle equilibrium so that the 
total time is proportional to the device size. This can range 
from a few milliseconds for fixed value boundary conditions 
on a small limiter device to several tens of milliseconds for 
flux boundary conditions at the core-SOL of a large diver- 
tor machine and for a simulation from “start-up” conditions 
(low plasma densities and temperatures far from the steady 
state solution). It was found that the time to reach steady 
state solution for fixed value BC (at the core-SOL) on 
limiter cases range from 24 ms. on the CCT (UCLA’s 
tokamak) to 7-12 ms on TEXTOR : ALT-II (a tokamak at 
Jiilich, Germany) [7]. The larger time in the Textor case is 
due to the wider SOL than usual, 12 cm. On divertors with 
fixed BC, the total simulation times were 5-8 ms. The flux 
BC on divertors typically run 2&30 ms for a complete 
simulation from initial conditions and about 5-7 ms to 
reach a new equilibrium solution from a similar previous 
equilibrium solution. The cpu time in minutes is comparable 
to the simulation time in milliseconds. 

Numerical instabilities in the target area result if dt is too 
large. This is related to the relaxation scheme correcting the 
velocity fields while assuming the temperature is constant 
during one iteration. This assumption is poor at the target 
boundary condition, where the velocity approaches the 
sound speed, a function of the local temperature. It may be 
possible to improve convergence time by increasing the time 
step with additional quasi-linearization incorporating the 
sound speed at the target into the boundary condition on 
the parallel flow velocity. This possibility was examined 
briefly in this study, but the attempted quasi-linearizations 
were not adequate to improve the time step limitation. 

V. COMPUTATIONAL RESULTS 

V.l. Calibrations 

Calibration studies have been described elsewhere in 
several cases [7,23]. One case involves the validation of the 
neutral diffusion model, with the one group-ion tem- 
perature equilibrium (OGITE) approximtion, incorporated 
into the EPIC code. It was shown [23] that in a wide range 
of plasma regimes in density and temperature profiles 
typical of the tokamak plasma region, the neutral diffusion 
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model compared well with Monte Carlo transport calcula- 
tions by the DEGAS [SO] code. These tests were in edge 
plasma regimes, where the plasma which recycled from the 
target plate was the dominant source of neutrals. In this 
case the OGITE assumption is reasonably accurate and 
produces good neutral density results in the diffusion model. 
In a regime dominated by cold molecular neutrals such as in 
a strong gas puffing source in the edge, it is likely that a 
more elaborate neutral diffusion model is required for 
realistic results, possibily a two goup neutral diffusion 
model including neutral energy equations to evaluate the 
average fluid energy of each neutral group. 

Calibration studies have also compared the EPIC code 
results to the computational results of a widely used plasma 
edge fluid transport code, B2, developed by Braams [12]. 
Comparisons made in the experimental tokamak plasma 
regime (ASDEX tokamak) were found to be quite good, 
with predicted recycling densities and temperatures at the 
divertor target plate agreeing within 20% between the 
two codes [7,23]. These comparisons were fixed value 
boundary conditions at the separatrix. Related studies using 
the EPIC code suggested that flux boundary conditions 
gave more realistic solution profiles. 

Comparisons between these codes were made in the 
tokamak plasma edge regime expected in fusion reactor 
relevant plasmas [Sl]. Results from the EPIC code for this 
case are discussed in the next section. In this regime there is 

I  I  I  

.900 6.075 7.250 9.425 c k.st m 
Major Radius -m- 

FIG. 5. The neutral density, n,, recycling solution maximum of 
2.5 x 1Ou’ me3 occurs at the orthogonal target plate about two-thirds of 
the way radially from the separatrix to the outermost flux surface in the 
outboard lower scrape olflayer. Beyond the contour region, n, < IO’* me3. 

considerably more difficulty in obtaining a stable converged 
solution with the EPIC code or with the Braams’ (B2) code, 
and so the code comparisons are ambiguous in the power 
reactor plasma. In these high heat flux regimes, it is difficult 
to prove that a low temperature divertor plasma solution is 
stable, so the computational difficulties may represent a 
physically unstable plasma. Before meaningful code com- 
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FIG. 6. (a) The plasma density recycling solution peaks sharply with 
a maximum of 9 x 102’ mm3 near the separatrix and in front of the target. 
The density is about 1 x 10” mM3 along the separatrix from the midplane 
to the x-point, 5 x 10” mm3 at the separatrix-target intercept, and less 
than 5 x lOI mm3 along the first wall (or outermost flux surface), as seen 
in Fig. 6b. (b) The plasma density solution (10” m-‘) shown radially 
across the magnetic flux surfaces at three poloidal locations: (0 : upstream 
(midplane), 0 : midstream (slightly upstream of the x-point), and 
A : downstream (across the divertor target). 
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parisons can be done in this regime, more research is 
required to distinguish the numerical from the physical 
instabilities and to resolve the uncertainty in attaining (time 
dependent) and maintaining (steady state) a low tem- 
perature divertor plasma under high power flux conditions. 

Calibration by comparison of computational results to 
observed experimental profiles is limited, due in part to a 
sparsity of data in the plasma edge. The present code has 
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FIG. 7. (a) Electron temperature contours have a maximum along the 
separatrix of 220 eV (midstream) to 225 eV (upstream). The maximum at 
the target is 20 eV on the separatrix-target intercept. Values at the first wall 
are less than 20 eV. (b) Electron temperature solution (eV) shown radially 
across the magnetic flux surfaces at three poloidal locations: (cl : upstream 
(midplane), 0 : midstream (slightly upstream of the x-point), and 
n : downstream (across the divertor target). 

been compared to data sets taken from two limiter 
tokamaks, TEXTOR with the toroidally symmetric belt 
limiter, ALT-II, and the CCT (UCLA). In both of these 
cases, the comparison was complicated by the flow 
dynamics in which the poloidal drift appears to play a 
dominant role [7]. 
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FIG. 8. (a) The plasma parallel velocity solution is near zero 
throughout much of the scrape off layer except in the divertor region, 
where it climbs steeply in front of the target to reach a maximum of about 
8 x IO4 ms - ’ at the divertor target. A small “stagnant region” (u < 0 ms -I) 
is indicated in the figure and can be compared to the result in Fig. 8b. 
(b) The plasma parallel velocity solution ( IO4 ms-‘) shown radially across 
the magnetic flux surfaces at three poloidal locations: (0: upstream 
(midplane), 0: midstream (slightly upstream of the x-point), and 
A : downstream (across the divertor target). 
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The calibration of the anomalous radial diffusion coef- 
ficient depends on the proper poloidal flow which has a 
parallel and drift component. Since the present computa- 
tional model only includes the parallel component of 
the poloidal flow self-consistently, it is not possible to 
fully reconcile the computational predictions with the 
experimental data until the drift flow is self-consistently 
computed in the model. However, the limiter studies clearly 
show that the computations and experiments are in 
reasonable agreement. Further, it is seen that including the 
drift in the computations is expected to improve computa- 
tional-experimental comparisons to a level of very good 
agreement. Similar findings comparing computations to 
experimental data from the TEXTOR edge plasma have 
been reported in a self-consistently computed non- 
ambipolar flow that includes drift flux [9]. 

V.2. Model Results for a Divertor Tokamak 

Qualitative results from the EPIC code are shown in Figs. 
5-11, for a divertor tokamak proposed to operate in the 
fusion power regime. This example is from an prototype of 
the ARIES (advanced reactor innovations and evaluation 
study) I reactor [Sl 1, which operates in a plasma regime 
and is sized similarly to the ITER (international tokamak 
experimental reactor) device [ 521. Zero radial advective 
flux is assumed for this example. 

I I I 
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The contour results are computed and plotted in the 
magnetic geometry for the device, which is determined from 
the MHD equilibria code, NEQ [40]. The figures show the 
lower outboard quadrant of the edge plasma or SOL for the 
device. The outboard midplane is the symmetry line with 
respect to the parallel flow for this double null conligura- 
tion. The divertor target (not shown) is orthogonal in this 
case and located horizontally and below the null (or 
x-point) at z = - 3.7 m, Where the densities are seen to peak 
in the neutral and plasma contour plots, Figs. 5 and 6, 
respectively. The contour plots in each of the resultant 
figures are seen to extend slightly beyond the actual SOL 
domain, and to exhibit “wiggles” along the edges, notably 
along the separatrix. These are minor artifacts of the 
contouring routine and do not have a physical significance. 

The plots of neutral density and plasma density show the 
recycling near the divertor target, leading to a plasma den- 
sity maximum near 9. x 102’ m p3 (in Fig. 6b). There is a 
concomitant decrease in the plasma temperatures near the 
divertor target plate, as seen in Figs. 7a and b for the elec- 
tron temperature. The reduced plasma temperature at the 
divertor is the desired solution to minimize the temperature- 
sensitive plasma sputtering and erosion of the target 
material, as discussed for the ARIES reactor [Sl 1. 

The stability of this desired solution was found to be 
uncertain in time dependent studies of the plasma edge, 
suggesting this solution may not be a true steady state 
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FIG. 9. (a) The plasma drift velocity solution in the outboard lower scrape off layer is characterized by steep radial gradients and mild poloidal 
gradients, with the solution at the separatrix ranging from 0.05 x lo4 ms-’ (midstream) to 0.15 x lo4 ms-’ (upstream) and less than 0.02 x IO4 ms-’ near 
the outermost flux surface and throughout the divertor region. (b) The plasma poloidal velocity solution is similar to the drift solution outside of the 
divertor region and picks up a significant contribution from the parallel flow in the divertor as seen by comparing this figure to Figs. 8a and 9a. 
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FIG. 10. The ambipolar plasma potential solution approximately 
follows the electron temperature contours in the outboard lower scrape off 
layer, ranging from z T,/e (midstream and upstream) to x 3TJe at the 
target. 
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suitable for reactor operation. Additional study in this area 
is required to gain confidence in obtaining and maintaining 
the high recycling solution at power reactor flux levels. 

The parallel flow has reversed in an area upstream of the 
maximum recycling zone near the target as seen in the Figs. 
8a and b. The double peak in parallel velocity at the target 
(A in Fig. 8b) arises from separate temperature peaks in the 
ion and electron channels, further evidence of an unstable 
solution. The drift flow is shown in Fig. 9a and is seen 
qualitatively to dominate near the separatrix region, where 
the radial profiles are large. The poloidal flow components 
of the parallel and drift velocities are combined in Fig. 9b. 
Recall that the drift flux is calculated from the E x B and 
Vp x B drift terms, where E is determined in an ambipolar 
approximation, and that the drift flux is neglected in the 
transport of the plasma density and temperatures as a 
numerical simplification. The figure shows that this sim- 
plification is not well justified near the separatrix and efforts 
to incorporate the drift transport self-consistently have been 
initiated. 

The ambipolar plasma potential and resultant plasma 
electric fields are shown in Figs. 10, 1 la, and 1 lb. 
Qualitatively, the radial electric field (with a maximum of 
order 2 x lo4 V/m) is seen to dominate upstream where the 
drift current is important while the poloidal electric field (of 
order 100 V/m) is more obvious near the target where the 
parallel flow gradients are strongest. The electric field in the 

6.075 7.250 8.425 c 

Major Radius -m- 
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FIG. 11. (a) The plasma radial electric field exhibits steep radial and modest poloidal gradients with maximum values along the separatrix of 
2 x lo3 Vm-’ (midstream) to 1 x lo4 Vm -’ (upstream). It is nearly zero at the outermost flux surface and throughout the divertor region. (b) The plasma 
poloidal electric field solution is in the range 25-40 Vm-’ in the divertor recycling region and near zero outside the divertor region. 
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edge plasma region has been implicated as a significant 
factor in global confinement both experimentally and 
theoretically [53]. The mechanism is not fully understood. 

One suggestion to be pursued in a future computational 
study is that the combination of strong poloidal flows 
simultaneously with the strong poloidal and radial 
gradients in the electric field is sufficient to couple the mean 
and fluctuating flows, inducing turbulent transport in the 
plasma edge region. This can be examined in computational 
studies by introducing assumptions relating the fluctuating 
velocity to the mean flow in defining the momentum 
(and conductivity) tensors in the fluid equations, and 
then by solving the three coupled momentum equations 
consistently. A modest coupling between momentum 
components is expected to drive anomalously large 
cross-field flow because the parallel flow approaches sonic 
conditions at the plasma sheath boundary. 

VI. SUMMARY AND CONCLUSIONS 

A 2D coupled plasma-neutral fluid computational model 
for the toroidally symmetric plasma edge region is 
presented. The neutrals are computed in a diffusion 
approximation implemented with a OGITE assumption. 
The plasma-neutral coupling allows a self-consistently 
computed numerical solution to problems related to 
“recycling” in the edge region. In its present form, the code 
does not address the problem of impurities which may play 
an important role in tokamak edge physics. 

The plasma and neutral equations are finite discretized in 
a control volume approach which allows complex grids to 
conform with magnetic flux surfaces. A relaxation method 
for the time integration of the equations based on the 
SIMPLE method was found to be marginal for the com- 
pressible plasma with an inhomogeneous source term in the 
continuity equation. Improvement in performance was 
achieved by developing an “implicit diffusion” added to 
both sides of the continuity equation, allowing for time- 
dependent evolution. The steady state solution requires a 
large number of time steps, where the time step size is 
restricted by the advective plasma flows near the sonic 
plasma sheat boundary condition while the total time to 
steady state is determined by the particle recycling from the 
boundaries. This requires a residual correction to the 
continuity equation at each time step to assure a true 
convergence on the longer time scales associated with 
steady state. 

The computational code has been calibrated in several 
studies that are detailed in separate reports [7,23]. These 
studies find the present EPIC code results are realistic 
compared to other existing computational results and to 
experimental data from the tokamak program. 

Some example output from the EPIC code is presented 
for a divertor tokamak operating at reactor relevant 

parameters. The examples show a high recycling solution, 
but the time dependent studies suggest that this solution 
may not be stable in the long term steady state operation. 
The complex flow patterns of plasma poloidal flux and 
poloidal gradient quantities suggests a turbulent edge 
plasma exists in this regime. More detailed studies will 
require distinguishing the electron and the ion responses to 
these complex,plasma conditions. 

The impact of the edge plasma on the core confinement is 
one of the most critical and least understood areas. This can 
be addressed realistically with a coupled edge-core plasma 
model [54], but work in this area is in its infancy and may 
be several years until a complete coupling. An ideal edge 
model would incorporate a core plasma transport model 
self-consistently to match the fluxes at the core-edge inter- 
face rather than specifying a boundary condition there. In 
this way a globally self-consistent picture could evolve. This 
ideal edge model would also require an MHD model to 
determine the magnetic flux surfaces evolving at each time 
step and prescribing the orthogonal grid on which the edge 
plasma fluid equations are solved. 

The plasma edge is observed experimentally to be 
extremely complex. Considerable simplifying assumptions 
are needed to derive a fluid model to simulate the plasma 
and the neutral species in this region, leaving a gap between 
the dynamic plasma-neutral interactions and the relatively 
simple computational models. This computational effort is 
still in its infancy but is improving rapidly to model the edge 
plasma realistically. 

ACKNOWLEDGMENTS 

This work was performed at the Institute of Plasma and Fusion 
Research, University of California at Los Angeles, under a grant from the 
U.S. Department of Energy. The manuscript was completed at the Los 
Alamos National Laboratory operated by the University of California for 
the Department of Energy. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

REFERENCES 

D. E. Post and R. Behrisch, (Eds.), Physics of Plasma Wall Interactions 
in Controlled Fusion (Plenum, New York, 1986). 

D. E. Post, “Role of Atomic Collisions in Fusion,” in Physics of 
Ion-Ion and Electron-Ion Collisions, edited by F. Brouillard and 
J. W. McGowan (Plenum, New York, 1983), p. 37. 

M. F. A. Harrison, “Boundary Plasmas,” in Applied Atomic Collision 
Physics, Vol. I, edited by C. F. Barnett and M. F. A. Harrison, Ed. 
(Academic, New York, 1984), p. 395. 

P. J. Harbour, Nucl. Fusion 24, 1211 (1984). 

D. E. Post and K. Lackner, in Physics of Plasma Wall Interactions in 
ControNed Fusion, edited by D. E. Post and R. Behrisch (Plenum, 
New York, 1986), p. 627. 

M. F. A. Harrison, P. J. Harbour, and H. J. Hotston, Nucl. Fusion/ 
Tech. 3,432 (1983). 

E. L. Void, Ph.D. dissertation, University of California at Los Angeles, 
1989 (unpublished). 



COUPLED PLASMA-NEUTRAL TRANSPORT 319 

8. M. Sugihara, S. Saito, S. Hitoki, and N. Fujisawa, J. Nucl. Mater. 
128/129, 114 (1984). 

9. H. Gerhauser and H. A. Claassen, .J. Nucl. Mater. 176/177,721 (1990). 

10. H. Gerhauser and H. A. Claassen, Report Jill-2125, KFA, Jiilich, 1987 
(unpublished). 

11. B. J. Braams, in 11th European Conf. on Controlled Fusion and Plasma 
Physics, Aachen B34,431 (1983); see also B. Braams, in 12th European 
Co& on Controlled Fusion and Plasma Physics, Budapest, p. 480 
(European physical Society, Petit-Lancy, Switzerland, 1985). 

12. B. J. Braams, dissertation, The State University at Utrecht, The 
Netherlands, 1986 (unpublished). 

13. R. Simonini, W. Feneberg, and A. Taroni, in 12th European Conf. on 
Controlled Fusion and Plasma Physics, Budapest, p. 484 (European 
Physical Society, Petit-Lancy, Switzerland, 1985). 

14. A. Nicolai and P. Borner, in 12th European Conf. on Controlled Fusion 
and Plasma Physics, Budapest, p. 519 (European Physical Society, 
Petit-Lancy, Switzerland, 1985). 

15. Yu. L. Igitkhanov, A. S. Kulcushkin, A. Yu. Pigarov, and V. I. 
Pistunovich, in 11th European Conf: on Controlled Fusion and Plasma 
Physics, Aachen, A36. p. 397 (European Physical Society, Petit-Lancy, 
Switzerland, 1983). 

16. M. Petravic, D. Heifetz, G. Kuo-Petravic, and D. Post, I. Nucl. Mater. 
128/129, 111 (1984). 

17. S. Saito, T. Kobayashi, M. Sugihara, and N. Fujisawa, J. Nuc[. Mater. 
128/129, 131 (1984). 

18. N. Ueda, M. Kasai, M. Tanaka, M. Sugihara, and S. Sengoku, Nucl. 
Fusion 28, 1183 (1988). 

19. M. Petravic and G. Kuo-Petravic, Nucl. Fusion 30, 1148 (1990). 

20. D. Knoll and A. K. Prinja, J. Nucl. Mafer. 176/177, 562 (1990). 

21. S. I. Braginskii, “Transport Processes in Plasmas,” in Reuiews of 
Plasma Physics, Vol. 1 (Consultants Bureau, New York, 1965). 

22. F. L. Hinton and G. Staebler, in 12th International Conf on Plasma 
Physics and Contr. Fusion Research, Nice, France, Vol. II, p. 327 
(IAEA, Vienna, 1988); see also Hinton and Staebler, Nucl. Fusion 
29( 3), 405 (1989). 

23. E. L. Vold, A. K. Prinja, F. Najmabadi, and R. W. Conn, J. Nucl. 
Mater. 176/177, 570 (1990). 

24. H. L. Stone, SIAM I. Numer. Anal. 5, 530 (1968). 

25. R. W. MacCormack, “Rapid Solver for Hyperbolic Systems of Equa- 
tions,” in Proceedings, Fifth International ConJ: on Numerical Methods 
in Fluid Dynamics (Springer-Verlag, New York, 1976), p. 307. 

26. E. L. Void, F. Najmabadi, and R. W. Conn, Phys. Fluids B 3( 11 ), 3132 
(1991). 

27. J. F. Luciani, P. Mora, and J. Virmont, Pltys. Rev. Lett. 51, 1664 
(1983). 

28. P. Mora and J. F. Luciani, in International Conf: on Plasma Phys., Kiev, 
USSR, Vol. 2 (World Scientific Pub., Riveredge, NJ, 1987), p. 755. 

29. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis (Wiley, 
New York, 1976). 

30. M. 2. Hasan and R. W. Conn, J. Comput. Phys. 71, 371 (1987). 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

W. J. Corbett, D. Reiter, R. W. Conn, K. H. Dipple, and K. H. Finken, 
.I. Vat. Sci. & Technol. A 8(3), 1772 (1990). 

R. Chodura, in Physics of Plasma-Wall Interactions in Controlled 
Fusion, edited by D. E. Post and R. Behrisch (Plenum, New York, 
1986), p. 99. 

P. C. Stangeby, in Physics of Plasma- Wall interactions in Controlled 
Fusion, edited by D. E. Post and R. Behrisch (Plenum, New York, 
1986), p. 41. 

R. C. Bissell, P. C. Johnson, and P. C. Stangeby, Phys. Fluids B I, 1133 
(1989). 

R. W. MacCormack, SIAM-AMS Proc. 11, 130 (1978). 

S. V. Patankar and D. B. Spalding, .I. Heat Mass Transfer 15, 1787 
(1972). 

S. V. Pantankar, Numerical Heat Transfer and Fluid Flow 
(Hemisphere, McGraw Hill, New York, 1981). 

G. S. Deiwert, in Proceedings, 4th Inter Conf: on Numerical Methods in 
Fluid Dynamics, Lecture Notes in Physics, Vol. 35 (Springer-Verlag, 
New York, 1975), p. 132. 

R. C. Grimm, J. M. Greene, and J. L. Johnson, Mefhods Comput. Ph.w. 
9, 253 (1976). 

D. J. Strickler, J. D. Galambos, and Y-K. M. Peng, ORNL/FEDC- 
88/7, Oak Ridge National Laboratory, Oak Ridge, TN, 1989 
(unpublished). 

D. E. Potter and G. H. Tuttle, .I. Comput. Phys. 13,483 (1973). 

G. P. Maddison, Culham Lab. Report CLM-P-825, UKAEA, UK, 
1987 (unpublished). 

M. Petravic, I. Comput. Phys. 73, 125 (1987). 

F. H. Harlow and J. E. Welch, Phys. Fluids 8, 2182 (1965). 

E. S. Oran and J. P. Boris, The Numerical Simulation of Reactive Flows 
(Elsevier, New York, 1987). 

D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational 
Fluid Mechanics and Heat Transfer (Hemisphere, New York, 1984). 

P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, 
NM, 1982). 

D. S. Harned and W. Kerner, .I. Comput. Phys. 60, 62 (1985). 

C. W. Hirt and F. H. Harlow, I. Comput. Phys. 2, 114 (1967). 

D. Heifetz, in Physics of Plasma Wall Interactions in Controlled Fusion, 
edited by D. E. Post and R. Behrisch (Plenum, New York, 1986), 
p. 695. 

R. W. Conn, F. Najmabadi, and the ARIES Team, “ARIES I” paper 
IAEA-CN-53/H-l-4, in 13th International Conf. on Plasma Phys. and 
Contr. Nucl. Fusion Research, IAEA, Vienna, 1990; see also ARIES I 
Report, Chap. 5, “Divertor Physics,” Institute of Plasma and Fusion 
Research, UCLA, 1990 (unpublished). 

C. D. Henning, “ITER in Perspective,” IEEE 13th Symposium on 
Fusion Energy, Knoxville, TN, 1989, submitted; LLNL Report, UCRL- 
101756, Livermore, CA, 1989 (unpublished). 

K. C. Shaing, Phys. Fluids B 2, 764 (1990). 

A. K. Prinja, R. Schafer, R. W. Conn, and H. Howe, .I. Nucl. Ma&r. 
145147, 868 (1987). 


